تعامل یادگیری ماشینی و پردازنده‌ها
گوگل پردازنده‌ای ویژه هوش مصنوعی ساخت
گوگل برای افزایش سرعت محاسبات یادگیری ماشینی از تراشه پیشرفته TPU استفاده می‌کند. Tensor Processing Units به گونه‌ای طراحی شده است تا سرعت محاسبات یادگیری ماشینی را افزایش دهد، اما همانند یک پردازنده معمولی انرژی مصرف کند.

امروزه بیش از 100 تیم حرفه‌ای در گوگل از یادگیری ماشینی در حوزه‌های مختلف و همچنین بهبود عملکرد برنامه‌های کاربردی محبوب استفاده می‌کنند. Street View، صندوق پستی و جستجوی صوتی همه این برنامه‌ها به لطف یادگیری ماشینی به بهترین شکل عمل می‌کنند. اما در پس زمینه این نرم‌افزارهای محبوب، سخت‌افزارهای گوگل قرار دارند که همانند خورشیدی می‌درخشند. اگر به فعالیت‌های سخت‌افزاری گوگل نگاهی داشته باشیم، به خوبی مشاهده می‌کنیم که این شرکت با ساخت سخت‌افزارهای ویژه مراکز داده‌اش، بیگانه نیست. اما خبر طراحی یک پردازنده خاص، موضوع دیگری است.

مطلب پیشنهادی

از امروز می‌توانید خاطرات‌ ذهنی‌تان را روی چیپ‌ست ذخیره کنید
آیا IBM به فناوری حیرت‌انگیزی در حوزه مغز دست یافته است؟

این پردازنده خاص منظوره غول اینترنتی، یک واحد پردازش تانسو است که در اصل یک تراشه سفارشی ویژه یادگیری ماشینی است. در حالی که در ظاهر چنین به نظر می‌رسد که این پردازنده با هدف افزایش دقت وظایف هوش مصنوعی طراحی شده است، اما این چنین نیست. گوگل در ساخت این تراشه تمرکزش بر محاسبات خام بوده است. در نتیجه سعی کرده است  مصرف انرژی این تراشه را به حداقل رسانده تا در یادگیری ماشینی عملکرد بهتری داشته باشد. اگر این پردازنده را به لحاظ مصرف انرژی با پردازنده‌های رایج بازار مورد بررسی قرار دهیم، مشاهده می‌کنیم که این پردازنده با همان مصرف انرژی سریع‌تر کار می‌کند.

پروژه‌ای که نزدیک به یک سال مستتر بود!

گوگل نزدیک به یک سال پیش در سکوت کامل خبری کار روی پروژه‌ای در ارتباط با شتاب‌دهندگی پیشرفته در برنامه‌های کاربردی را آغاز کرد. پروژه‌ای که بر مبنای یادگیری ماشینی عمل می‌کرد. ماحصل این پروژه گوگل یک واحد پردازشی تانسور TPU بود. یک ASIC سفارشی که به‌طور خاص برای یادگیری ماشینی طراحی شده بود. تراشه‌ای که به بهترین شکل با پروژه یادگیری ماشینی منبع باز TensorFlow یکپارچه شده است. گوگل با استفاده از این تراشه‌‌ که مصرف انرژی آن بهینه‌سازی شده است، بسیاری از کارها را مدیریت کرده و فرآیندهایی همچون بهبود کیفیت نقشه‌ها و افزایش ضریب اعتماد به آلفاگو که برای شرکت در مسابقه Go آماده شده بود را بهبود بخشید. این همان تراشه‌‌ای بود که گوگل در بازی Go برای شکست قهرمان کره‌ای از آن استفاده کرد. تقریبا یک سال است که گوگل از این تراشه‌ها در مراکز داده‌ای خودش استفاده می‌کند.

اما دو نکته جالب توجه در ارتباط با این تراشه‌ها وجود دارد. اول آن‌که معماری این تراشه‌ها به گونه‌ای است که از هر وات مصرفی برای یادگیری ماشینی به صورت بهینه‌سازی شده‌ای استفاده می‌کند. دوم آن‌که گوگل دقت این تراشه‌ها را کمی کاهش داده است. این کاهش دقت باعث شده است تا از تعداد ترانزیستورهای کمتری برای انجام عملیات استفاده شود. این ترکیب به گوگل این توانایی را داده است تا عملیات بیشتری را در هر ثانیه به درون سیلیکون‌ها وارد کرده و از مدل‌های یادگیری ماشینی قدرتمندتری استفاده کرده و این مدل‌ها را بسط دهد. ماحصل این فعالیت‌ها در غالب ارائه نتایج هوشمندانه‌ای که به سرعت در حال رشد هستند به کاربران نشان داده می‌شود.

گوگل در ارتباط با دستاوردهای این شرکت در حوزه محاسبات پیشرفته گفته است: «هدف ما این است که به عنوان رهبری در صنعت یادگیری ماشینی شناخته شویم و نوآوری‌هایی که در این زمینه به وجود می‌آوریم را در اختیار مصرف کنندگان خودمان قرار دهیم. ساخت تراشه‌های TPU که در زیرساخت‌های گوگل مورد استفاده قرار می‌گیرد به ما اجازه می‌دهد تا قدرت گوگل در حوزه نرم‌افزارهایی همچون تانسورفلو و یادگیری ماشینی ابری را همراه با قابلیت‌های شتاب‌بخشی پیشرفته در اختیار توسعه دهندگان خود قرار دهیم. یادگیری ماشینی در حال تغییر این رویکرد است که چگونه توسعه‌دهندگان توانایی ساخت برنامه‌های هوشمندی را دارند که مزایایی را هم برای مصرف کنندگان و هم برای مشتریان به وجود آورد. ما با اشتیاق دوست داریم، آینده‌ای را مشاهده کنیم که این امکانات به بهترین نحو در زندگی مردم وارد شده باشد.»

لازم به توضیح است که شما توانایی خرید این پردازنده‌ها را ندارید، اما به خوبی تاثیرگذاری آن‌را بر هوش مصنوعی و از همه مهم‌تر بر سرویس‌های گوگل مشاهده خواهید کرد. 

===============================

شاید به این مطالب هم علاقمند باشید:

ماهنامه شبکه را از کجا تهیه کنیم؟
ماهنامه شبکه را می‌توانید از کتابخانه‌های عمومی سراسر کشور و نیز از دکه‌های روزنامه‌فروشی تهیه نمائید.

ثبت اشتراک نسخه کاغذی ماهنامه شبکه     
ثبت اشتراک نسخه آنلاین

 

کتاب الکترونیک +Network راهنمای شبکه‌ها

  • برای دانلود تنها کتاب کامل ترجمه فارسی +Network  اینجا  کلیک کنید.

کتاب الکترونیک دوره مقدماتی آموزش پایتون

  • اگر قصد یادگیری برنامه‌نویسی را دارید ولی هیچ پیش‌زمینه‌ای ندارید اینجا کلیک کنید.

ایسوس

نظر شما چیست؟